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This paper is concerned with the system identification of an experimental
chaotic system. A conventional double-well potential vibrator is modified to
accommodate an external air dash-pot damper. Damping can be controlled and
set to have either high or low damping. The system exhibits very rich dynamics
from periodic to chaotic states. The force-state mapping identification method is
applied to both linear and chaotic states with the emphasis on quantifying the
damping property for both high and low damping. This points to the potential
use in condition monitoring of chaotic systems.
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1. INTRODUCTION

Chaotic motion of the double-well potential vibrator have been extensively studied
over the last couple of decades. For example, Moon and Holmes [1] studied
motions of a thin steel beam buckled between two magnets, and established firm
theoretical and experimental evidence of chaotic behaviour of this type of vibrator.
However, not many articles can be found relating to system identification or
identifying some physical parameters of the system. This paper is mainly focused
on identifying system parameters with the emphasis on quantifying the damping
property.

In general, system identification methods for dynamical systems may be
classified into two groups: one is the parametric approach and the other
non-parametric. Parametric methods seek to determine the values of parameters
in an assumed model of the system to be identified, while non-parametric methods
produce the best functional representation of the system without a priori
assumptions about the system model. For system identification of non-linear
systems, if all state variables, the acceleration signal and input signal are available
together with knowledge of the mass, one can use the force-state mapping method.
The ‘force-state mapping’ technique, which is a non-parametric method, was first
introduced by Marsi and Caughey in 1979 [2]. Later in 1985, O’Donnell and
Crawley independently developed a similar method and named it the ‘force-state
mapping’ [3–7]. Since then, this technique has been applied to various engineering
fields and developed further, especially by Worden and Tomlinson [8–10],
Al-Hadid and Wright [11–15], and Lo [16]. The usefulness of this method is that
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one can estimate (all) the system parameters. This method has been applied to
various non-linear systems over the last couple of decades, but it has not been
reported for chaotic systems. This paper demonstrates how well the force-state
mapping technique can be applied to a practical chaotic system.

The beam studied in this paper is similar to the ‘‘Moon Beam’’ in reference [1]
in principle, and its dynamics are very similar to the Duffing type oscillator.
However, unlike the ‘‘Moon Beam’’, the shaker is used directly on the cantilever
beam and a dash-pot air damper is also introduced to control the amount of
damping in the system. The damper is set to produce two cases by adjusting the
damper plug giving high and low damping. When the magnets are removed the
beam becomes a simple linear cantilever beam. The force-state mapping method
is applied to this experimental set-up to identify system parameters for both the
linear system (without magnets) and the non-linear system (with magnets). The
excitation signal in the case of the linear system is an amplitude modulated
sinusoidal signal. For a non-linear system, the amplitude modulated sinusoidal
signal may not be successful since the motion of the beam behaves in a complex
way and does not cover the state space effectively when the input amplitude gets
large. This is due to the magnets which attract the beam. However, when the beam
is excited by a single sinusoidal signal with a certain amplitude level, its motion
becomes chaotic. Although the input signal is a single sinusoid, because the motion
is chaotic it covers a wide range of the state space. Thus it makes it possible
to use the force-state mapping method. In this case, however, one must be
very careful about the estimation of the ‘‘effective mass’’ which will be discussed
later.

2. DESCRIPTION OF THE EXPERIMENTS AND MOTIONS OF THE BEAM

The mechanical system studied here is a cantilever beam buckled by two
magnets as illustrated in Figure 1. This system is similar to the magneto-elastic
oscillator of Moon and Holmes [1]. They used a very flexible thin steel beam
clamped at one end, and the whole device was driven by a shaker. However, their
beam was very thin (0·23 mm), so it was difficult to introduce an external damper.
Thus, for the experiment in this paper, a device was constructed which can
accommodate a dash-pot damper. A thin steel beam with dimensions
365 mm×25 mm×1 mm is clamped at the top of the experimental rig. At 70 mm
from the free end of the beam, a dash-pot air damper is introduced. This damper
can be controlled by adjusting the amount of air flow using a plug provided in
the damper. Two magnets are secured on a steel plate near the free end of the beam
to provide non-linear buckling forces. A sinusoidal signal from a signal generator
is fed to an electromagnetic shaker through a power amplifier, with a signal being
generated by a PC. The beam is then excited by an electromagnetic shaker at
60 mm from the clamped end of the beam. A force transducer is placed between
the beam and the shaker, and a full bridge strain gauge is attached near the
clamped end of the beam. The force and strain gauge signals are fed to an
oscilloscope and a PC with a data acquisition system. Provided that the motion
of the beam is dominated by one mode only, the strain gauge signal can be
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Figure 1. Experimental set-up.

transformed to a corresponding displacement signal, since the bending strain (ox )
is proportional to the lateral displacement ( y) such that

ox = ky. (1)

The constant k is found by measuring the strain gauge bridge output for a given
static displacement. For this experimental set-up, one can directly relate the beam
tip displacement and the output of the signal conditioner (amplifier) of the bridge.

As described in references [1, 7], the equations of motion for a single degree of
freedom approximation can be written as

mq̈(t)+ cq̇(t)− aq(t)+ bq3(t)=A cos (vt). (2)

Equation (2) is in the form of a Duffing equation, and so the experimental set-up
can be considered as a Duffing oscillator provided that the motion of the beam
is dominated by the lowest mode only.

The Duffing oscillator is a single degree of freedom non-linear system with two
stable equilibrium points and an unstable equilibrium point. Chaotic motion from
a Duffing oscillator is generated when the motion evolves around the two magnets
almost irregularly. In the experimental set-up, two stable equilibrium points are
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the centre of each magnet, and the unstable equilibrium point is between the two
magnets. To make sure that the beam behaves like a single degree of freedom
system, the motion of the beam should be dominated by its lowest mode during
the experiment. Assuming that the excitation frequency is near the first natural
frequency of the linear system (without magnets) results in the motion of the beam
being dominated by the lowest mode. A sinusoidal signal with a single frequency
is chosen to insure this. The natural frequencies of the beam without magnets
(i.e., in linear state) were measured, and the lowest natural frequency is about
7·1 Hz. The effect of the introduction of the magnets is to increase stiffness and
introduce non-linearity, but for low amplitude motion the ‘natural frequency’ is
shifted upwards slightly. During the experiment, the beam is excited at 7 Hz, and
it is observed that this results in the motion of the beam being dominated by the
first mode.

It is now briefly demonstrated how the experimental system changes from
periodic motion to chaotic motion by presenting both time series and pseudo phase
space (reconstructed phase portrait using the ‘method of delays’) [18] for each case
of different motions. Starting with a small amplitude for the input signal, the
motions of the beam are examined by gradually increasing the amplitude of the
input signal with a fixed frequency (7 Hz). When the amplitude of the input signal
is small, the beam oscillates around one of the equilibrium points. The
fundamental period of the motion is the same as the period of the input signal,
i.e., period-1 motion as shown in Figure 2(a) and (b). As the amplitude increases
the motion becomes period-2, period-3, etc., and finally it becomes chaotic. These
are shown in Figure 2. Note that these are experimental results. It is also found
experimentally that the motion after period-3 is very sensitive to the amplitude
applied, so a small increase of amplitude causes chaotic motion. Thus, it is very
difficult to observe the higher order subharmonic motions beyond period-3. This
may be due to the finite precision of the experimental devices which cannot control
the input amplitude precisely. However, from Figure 2, one can see that chaotic
motion arises after subharmonic motion.

It has been shown how the experimental set-up behaves like the Duffing
equation in a specific case, and several types of motion of the beam, depending
on the amplitude of excitations, have been presented. In the following section,
system parameters in (2) are obtained from the force-state mapping technique, and
a comparison is made between linear and non-linear systems.

3. SYSTEM IDENTIFICATION USING THE FORCE-STATE
MAPPING METHOD

Consider the equation of motion of the SDOF system

mẍ+ f(x, ẋ)=F(t) (3)

where f(x, ẋ) is a function which denotes the restoring force of the system.
Rearranging (3) gives

f(x, ẋ)=F(t)−mẍ=Fnet . (4)
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Figure 2. Different types of motions of the beam (forcing frequency 7 Hz). Pseudo phase portraits
are constructed by the method of delays with delay time T=0·026 s. x(t) denotes the displacement.
(a) Time series of the period-1 motion. (b) Pseudo phase portrait of period-1 motion. (c) Time series
of the period-2 motion. (d) Pseudo phase portrait of period-2 motion. (e) Time series of the period-3
motion. (f) Pseudo phase portrait of period-3 motion. (g) Time series of the chaotic motion. (h)
Pseudo phase portrait of chaotic motion.

If the applied force, mass, and acceleration signal are known then one can
construct a 3-dimensional plot of Fnet versus x and ẋ. The state variables (x and
ẋ) can be usually found by direct measurements or through integration of ẍ. If
the net force (Fnet ) is only a function of the state variables, then the 3-dimensional
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plot produces a unique surface and the surface will be independent of the time
history of the applied force. Therefore, any type of applied force can be used.
However, the ability to produce a complete ‘force-state map’ requires that the
force input signal excites the displacement (x) and velocity (ẋ) which adequately
‘cover’ the state space in such a way that the measurements are reasonably dense
within the space. If there is a region in the state space which is not excited by the
applied force, then there will be a ‘hole’ in the surface of the force-state map. Thus,
the commonly used input force signals are random signals and modulated
sinusoidal signals. Once the necessary signals (Fnet , x and ẋ) have been obtained,
the state signals are divided into ‘grids’ with designated ‘representative points’. A
representative point can be obtained by averaging all the Fnet values whose
corresponding state (x and ẋ) fall into the pre-determined specific grid [16]. This
results in x being a row×1 vector, ẋ being a col×1 vector, and Fnet being a
row×col matrix, where ‘row’ and ‘col’ are the number of grids for each signal.
When this process is done, the state parameters can be obtained by curve fitting
to the surface (e.g., Chebyshev polynomials by Marsi et al. [2]). In this paper,
ordinary polynomials are used for the curve fitting, and the force-state mapping
method is applied to both experimental linear systems and chaotic systems. In
order to successfully apply the force-state mapping method, there are many things
to be carefully considered. Any phase mismatches of devices will degrade the
quality of the surface and should be avoided. For example, the charge amplifier
used in this experiment had a 180° phase shift which had to be accounted for, and
different devices have different phase delays associated with them. These
characteristics must be carefully considered and accounted for. In general, it may
be difficult to measure all the necessary signals simultaneously, so one usually
measures acceleration and then obtains displacement and velocity signals by either
time domain integration or frequency domain integration. However during chaotic
motion in this experiment, which results in swinging from one equilibrium point
to another, this produces large negative and positive offsets in measurements,
making it difficult to use integration methods, since offset introduces a drifting
effect. Thus, numerical differentiation is used after measuring the displacement
signal which is obtained via the strain gauge bridge output. If x(n) is the measured

Figure 3. Input, output signal used for a linear system identification (forcing frequency 7 Hz). (a)
Actual input force signal measured from a force transducer. (b) Measured displacement signal
converted from the strain gauge bridge output.
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Figure 4. Mass estimation plot for a linear system using the sensitivity approach. (a) Estimated
mass is varying from 0·42 to 0·65 kg (forcing frequencies: 6, 7, 8 and 9 Hz from solid line to dotted
line). (b) Estimated mass is 0·52 kg (forcing frequency: 6·8 Hz for solid line and 7·2 Hz for dotted
line).

discrete displacement time series with sampling rate 1/T, then the velocity signal
is obtained by using the central difference approximation [19], i.e.,

x'(n)=
x(n−2)−8x(n−1)+8x(n+1)− x(n+2)

12T
. (5)

One drawback of numerical differentiation is noise on the measured signal. An
‘insignificant’ noise in the displacement signal may cause a very noisy acceleration
for high frequency components. This problem can be alleviated by using the
‘Iterative SVD method’ which was developed by Shin [17]. It was shown that if
the sampling rate is very high compared to the forcing frequency, then one can
almost blindly use this method. Examples of noise reduction are shown together
with the experimental results for linear systems. A particular problem is the
estimation of mass, which is also discussed.

3.1.  

If the two permanent magnets are not introduced and excitation is not too large,
the experimental set-up becomes a simple linear cantilever beam. So the equation
of motion for one mode (9) can be simply written as

cq̇(t)+ kq(t)=F(t)−meq̈(t)=Fnet . (6)

The system parameters c and k are now estimated by using the force-state mapping
method. The input forcing signal is generated in the PC and then, through the
DAC (Digital-Analogue Converter) and amplifier, it is fed to the shaker. The input
signal used here is an amplitude modulated signal as shown in Figure 3.

Even in a simple linear system, correct estimation of the effective mass me is
critical and has been studied extensively by a number of authors. If the geometry
is simple like a cantilever beam, the effective mass (modal mass of the first mode)
can be obtained directly by

me =g
L

0

mf 2dx=0mb11 g
b1L

0

f 2db1x=
3·48 m

b1
(7)
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where, m is mass per unit length of the beam, and b1L=1·8751. The mass
estimated by (7) for the experimental set-up is me 1 0·13 kg. However, for this
estimated mass, the effects of additional masses are not included, i.e., dymamic
mass of the shaker and the mass of the force transducer introduce additional mass.
Because the cantilever beam is very light, the additional masses must be
considered. Thus, the sensitivity approach method developed by Al-Hadid et al.
[12–14] is used. Reference [14] briefly summarises the basic idea of this approach.
Given a single degree of freedom system of the form of equation (3), if an incorrect
mass m̂ (assumed mass) is used then the incorrect restoring force f
 (x, ẋ) is
estimated. If the system is linear, then f
 (x, ẋ)= ĉẋ+ k
 x, where ĉ is the estimated
damping and k
 is the estimated stiffness. For a linear system and a single sinusoidal

Figure 5. (a) Force-state plot of a linear system without the noise reduction technique (high
damping). (b) Force-state plot of a linear system with the noise reduction technique (high damping).
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Figure 6. (a) Surface representation of the force-state map of a linear system (high damping).
Estimated values of parameters: c=7·3 N · s/m and k=1·008 kN/m. (b) Surface representation of
the force-state map of a linear system (low damping). Estimated values of parameters:
c=2·7 N · s/m and k=1·007 kN/m.

frequency excitation (v), the relationship between the estimated mass and the
estimated stiffness is given by reference [14]

k
 =(k−v2m)+v2m̂ (8)

where, m and k are exact mass and stiffness respectively. Thus it is shown that the
relationship between m̂ and k
 is linear. Thus one can find the intersection point
by plotting lines (estimated stiffness versus assumed mass) found from curve fits
to measurements taken at two or more different excitation frequencies, assuming
two initial mass values. In general, the system parameter for the plot is the stiffness
term, but any system parameters can be used. If the system is a single degree of
freedom system, any lines must intersect at one point. This relationship is also true
for non-linear systems but depends on excitation amplitude [14]. However for a
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continuous system like the thin cantilever beam used in this experiment, although
the excitation frequencies are very near the first resonance frequency, the lines do
not intersect at one point but vary from frequency to frequency as shown in
Figure 4(a). This may be caused by the interference of higher modes. If this is true,
the effective mass is different at each driving frequency although the overall
behaviour of the system is like a single degree of freedom system. However, the
effective masses at neighbouring frequencies should not differ greatly from each
other. Thus, in this experiment, the driving frequency is decided and then the
sensitivity approach is performed using frequencies very near the driving
frequency. The driving frequency is chosen at 7 Hz which is very close to the first
natural frequency of the beam, and the frequencies at 6·8 and 7·2 Hz used for the
sensitivity approach. This is shown in Figure 4(b), and the estimated effective mass
is 0·52 kg. This method is carried out in exactly the same way for the non-linear
systems described in section 3.2.

Once the correct effective mass is estimated, one can now produce the surface
representation of the system. However, noise introduced through the numerical
differentiation cannot be ignored. A 3-dimensional plot of net force versus state
variables without any noise reduction technique is shown in Figure 5(a). Using the
‘Iterative SVD method’, this noise can be significantly reduced as shown in
Figure 5(b). The details of this noise reduction technique can be found in reference
[17]. The 3-dimensional surface representation is shown in Figure 6(a) for the
highly damped system, and in Figure 6(b) for the case of the weakly damped
system. From Figure 6, the estimated values of the parameters by polynomial
curve fitting are c=7·3 N · s/m and k=1·008 kN/m for the case of high damping,
and c=2·7 N · s/m and k=1·007 kN/m for the case of low damping. The results
are promising since the change of the property of air dash-pot damper (which is

Figure 7. Mass estimation plot for a chaotic system using the sensitivity approach. Estimated mass
is 0·77 kg (forcing frequency: 6·8 Hz for solid line and 7·2 Hz for dotted line).
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Figure 8. (a) Bad choice of the assumed mass. Force-state plot of a chaotic system with an
assumed mass 0·2 kg (low damping). (b) Right choice of the assumed mass. Force-state plot of a
chaotic system with an assumed mass 0·7 kg (low damping).

assumed to be linear) causes only a change of the damping coefficient while the
stiffness term remains almost the same.

3.2. - () 

The equation of motion (2) can be rearranged as

cq̇(t)− aq(t)+ bq3(t)=F(t)−meq̈(t)=Fnet . (9)

For the forcing signal F(t), one may attempt to use the same signal as in the case
of the linear system. However, it was found that the short duration of the
amplitude modulated signal fails to excite a large area of the state space. The
motion of the beam becomes chaotic as soon as the amplitude gets large,
producing a ‘hole’ in the state space. However, if the beam is excited with a single
sinusoidal signal in a chaotic regime over a long time, the motion is chaotic and
a large area of state space will be covered. Thus the forcing signal for this case
is chosen as a sinusoidal signal creating a chaotic regime.
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The effective mass estimation is carried out in the same way as described in
section 3.1. As shown in Figure 7, the effective mass is estimated as 0·77 kg. For
linear systems, any assumed masses can be used to estimate the effective mass of
the system. However, one must be careful when the sensitivity approach is used
for a chaotic system. Unlike the linear system, the 3-dimensional plot of net force
versus state space using a significantly different mass from the true effective mass
will result in almost no structure. This makes it impossible to estimate the effective
mass, since the estimated system parameters corresponding to the assumed mass
is obtained from the estimated force-state surface constructed by using the
assumed mass. An example of a bad choice of assumed mass is shown in
Figure 8(a) with an assumed mass 0·2 kg, and Figure 8(b) shows the example of
right choice of the assumed mass (0·7 kg). Thus assumed mass must be chosen
carefully. We simply use the sensitivity approach on a trial and error basis, i.e.,
one can construct the 3-dimensional plot using from a very small assumed mass

Figure 9. (a) Surface representation of the force-state map of a chaotic system (high damping).
Estimated values of parameters: c=8·6 N · s/m, a=−1·3 kN/m, and b=56·1 MN/m3. (b) Surface
representation of the force-state map of a chaotic system (low damping). Estimated values of
parameters: c=3·0 N · s/m, a=−1·4 kN/m, and b=54·9 MN/m3.
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T 1

Summary of the experimental results

Cases c (N · s/m) k (kN/m) a (kN/m) b (MN/m3)

Linear (low damping) 2·72 0·8 1·02 0·1
Linear (high damping) 7·32 0·6 1·02 0·1
Chaos (low damping) 3·02 1·2 1·42 0·2 54·92 0·6
Chaos (high damping) 8·62 1·2 1·32 0·1 56·12 0·6

to a very large assumed mass by incrementing the assumed mass, and finding the
region where the structure is revealed.

Using the estimated effective mass, the surface representation of the system is
produced. The surface representation is shown in Figure 9(a) for the high damping
system, and in Figure 9(b) for the case of low damping. From these figures, the
estimated values of the parameters by polynomial curve fitting are c=8·6 N · s/m,
a=1·3 kN/m, and b=56·1 MN/m3 for the case of high damping, and
c=3·0 N · s/m, a=1·4 kN/m, and b=54·9 MN/m3 for the case of low damping.
The results are almost the same as the case of linear systems, i.e., only an increase
of damping coefficient while the other parameters remain almost the same, but the
damping coefficient of the chaotic system should not differ from that of the
corresponding linear system. However, there is a small difference between the
linear system and chaotic system in the estimation of the damping parameter. In
spite of this small difference, considering many aspects of measurements and
numerical procedures, one can consider the difference is insignificant, and the
results can be considered as satisfactory.

4. DISCUSSION

In this paper, the force-state mapping method has been successfully applied to
a practical experimental set-up. To the author’s knowledge, it is the first time that
the force-state mapping method has been successfully applied to a chaotic system.
The results of both linear and non-linear systems are compared by changing the
condition of damping while the other parameters remain the same. These are
summarised in Table 1, and are obtained using four segments of the experimental
data. From this, it is shown that there is good agreement between the two systems,
i.e., the estimated damping parameters of both linear and non-linear systems are
very similar while the other parameters are unchanged for both high and low
damping. The results presented in this paper are very promising, and so may be
further investigated in condition monitoring of chaotic systems.
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